Search results

Search for "amine radical cation" in Full Text gives 10 result(s) in Beilstein Journal of Organic Chemistry.

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • ] discovered the photoinduced, copper-catalyzed cyanofluoroalkylation of alkenes and fluoroalkyl iodides 12. The reaction was initiated by the reduction of CuII with tertiary amines, which formed CuICN and an amine radical cation [55]. Under irradiation by ultraviolet light, CuICN was excited and transformed
PDF
Album
Review
Published 12 Oct 2021

Heterogeneous photocatalysis in flow chemical reactors

  • Christopher G. Thomson,
  • Ai-Lan Lee and
  • Filipe Vilela

Beilstein J. Org. Chem. 2020, 16, 1495–1549, doi:10.3762/bjoc.16.125

Graphical Abstract
PDF
Album
Review
Published 26 Jun 2020

Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis

  • Stephanie G. E. Amos,
  • Marion Garreau,
  • Luca Buzzetti and
  • Jerome Waser

Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103

Graphical Abstract
  • -opening driving force. N-Aryltetrahydroquinolines 34.1 have been intensively studied as a privileged scaffold for N-centred radical cation formations [138]. After iminium formation, formed by subsequent HAT on the amine radical cation, various nucleophiles can add, resulting in diverse functionalizations
PDF
Album
Review
Published 29 May 2020

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  •  28) [63]. The reaction mechanism is different from the previous examples. The photoexcited state of Eosin Y can be quenched reductively by tertiary amines to form an Eosin Y radical anion and an amine radical cation. Molecular oxygen regenerates Eosin Y and is reduced to its superoxide radical anion
PDF
Album
Review
Published 05 Jan 2018

Eosin Y-catalyzed visible-light-mediated aerobic oxidative cyclization of N,N-dimethylanilines with maleimides

  • Zhongwei Liang,
  • Song Xu,
  • Wenyan Tian and
  • Ronghua Zhang

Beilstein J. Org. Chem. 2015, 11, 425–430, doi:10.3762/bjoc.11.48

Graphical Abstract
  • undergo an oxidative or reductive quenching cycle [48][49][50]. In this mechanism, a single electron transfer (SET) from 1 to 3EY* generates the amine radical cation 4, and at the same time, 3EY* is reduced to the EY•−. In the presence of oxygen, the photoredox catalytic cycle of EY is finished via a SET
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2015

Visible light mediated intermolecular [3 + 2] annulation of cyclopropylanilines with alkynes

  • Theresa H. Nguyen,
  • Soumitra Maity and
  • Nan Zheng

Beilstein J. Org. Chem. 2014, 10, 975–980, doi:10.3762/bjoc.10.96

Graphical Abstract
  • % from 21. Mechanistically, the annulation with alkynes probably proceeds through a pathway similar to the one we proposed for the annulation with alkenes (Scheme 2) [29]. The photoexcited Ru(bpz)32+ oxidizes cyclopropylaniline 24 to the corresponding amine radical cation 25, which triggers the
  • radical cation 29. Finally, Ru(bpz)31+ reduces amine radical cation 29 to the annulation product 30 while regenerating Ru(bpz)32+. The proposed mechanism accounts for lower reactivity of alkynes towards intermolecular addition of nucleophilic carbon-centered radicals as well as their regiochemistry in the
  • cyclopropyl ring opening to generate distonic radical cation 26. The primary carbon radical of 26 adds to the terminal carbon of alkyne 27 to afford vinyl radical 28. Intramolecular addition of the vinyl radical to the iminium ion of distonic radical cation 28 closes the five membered ring and furnishes amine
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2014

The chemistry of amine radical cations produced by visible light photoredox catalysis

  • Jie Hu,
  • Jiang Wang,
  • Theresa H. Nguyen and
  • Nan Zheng

Beilstein J. Org. Chem. 2013, 9, 1977–2001, doi:10.3762/bjoc.9.234

Graphical Abstract
  • are emerging as a powerful tool in amine synthesis. This article reviews synthetic applications of amine radical cations produced by visible light photocatalysis. Keywords: α-amino radical; amine radical cation; catalysis; distonic ion; free radical; iminium ion; photoredox; visible light
  • identification of the optimal solvent requires experimentation. Once formed, amine radical cation 2 has been shown to have four modes of reactivity. The first mode is the back electron transfer reaction, which involves amine radical cation 2 giving back one electron to M(n−1). This is a major side reaction
  • /or irreversible downstream reactions of 2. The second mode involves hydrogen atom abstraction from 2 to produce iminium ion 4, when a good hydrogen atom acceptor is present in the reaction. The use of amine radical cation 2 as the source of a hydrogen radical has been applied to a number of visible
PDF
Album
Review
Published 01 Oct 2013

Spectroscopic characterization of photoaccumulated radical anions: a litmus test to evaluate the efficiency of photoinduced electron transfer (PET) processes

  • Maurizio Fagnoni,
  • Stefano Protti,
  • Davide Ravelli and
  • Angelo Albini

Beilstein J. Org. Chem. 2013, 9, 800–808, doi:10.3762/bjoc.9.91

Graphical Abstract
  • OXA due to conformational factors, in particular the steric bulk of the methyl groups. The more efficiently formed radicals scoop away traces of oxygen still present under these conditions. Likewise, in accordance with the role of amine radical cation deprotonation, is the fact that, of the two
PDF
Album
Full Research Paper
Published 24 Apr 2013

Electron and hydrogen self-exchange of free radicals of sterically hindered tertiary aliphatic amines investigated by photo-CIDNP

  • Martin Goez,
  • Isabell Frisch and
  • Ingo Sartorius

Beilstein J. Org. Chem. 2013, 9, 437–446, doi:10.3762/bjoc.9.46

Graphical Abstract
  • polarization thus constrains the amine-derived radical to have a lower g value than the sensitizer-derived radical. For the sensitizer XA this in only possible in the case of the neutral radical pairs because the g value of the amine radical cation (2.0037 [46]) is higher than the g values of the sensitizer
PDF
Album
Full Research Paper
Published 26 Feb 2013

EPR and pulsed ENDOR study of intermediates from reactions of aromatic azides with group 13 metal trichlorides

  • Giorgio Bencivenni,
  • Riccardo Cesari,
  • Daniele Nanni,
  • Hassane El Mkami and
  • John C. Walton

Beilstein J. Org. Chem. 2010, 6, 713–725, doi:10.3762/bjoc.6.84

Graphical Abstract
  • and forms the 4-aminodiaryl amine radical cation after loss of HX and (ii) formation of the aniline radical ArNH•, which couples with ArNH3+, ArNH2 or ArNH2+•. A plausible mechanism for formation of the dimer and trimer radical cations we observed is shown in Scheme 5 for the case of 2-methoxyaniline
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2010
Other Beilstein-Institut Open Science Activities